Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

catena-Poly[[bis(1 H -benzimidazole- $\kappa \mathrm{N}^{3}$)cobalt(II)]-μ-terephthalato- $\left.\kappa^{3} O^{1}, O^{1^{\prime}}: O^{4}\right]$

Tian-Tian Pan, Jian-Rong Su and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.048$
$w R$ factor $=0.131$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]_{\mathrm{n}}$, the terephthalate dianions bridge $\mathrm{Co}^{\mathrm{II}}$ ions through terminal carboxyl groups to form polymeric complex chains; one carboxyl group coordinates in a monodentate manner and the other chelates to the Co atom. Two benzimidazole ligands also coordinate to the Co atom to complete a distorted trigonalbipyramidal coordination geometry. The crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ stacking involving the benzimidazole ligands, with a face-to-face separation of 3.454 (11) A.

Comment

$\pi-\pi$ Stacking interactions between aromatic rings have attracted much attention because they are correlated with the electron transfer process in some biological systems (Deisenhofer \& Michel, 1989). As part of our ongoing investigations of the nature of $\pi-\pi$ stacking (Pan \& Xu, 2004, 2005), the title polymeric $\mathrm{Co}^{\text {II }}$ complex, (I), incorporating terephthalate (tp) dianions and benzimidazole (bzim) ligands, has been prepared and its crystal structure is presented here.

(I)

A segment of the polymeric structure of (I) is illustrated in Fig. 1. The $\mathrm{Co}^{\mathrm{II}}$ ion is coordinated by two tp dianions and two bzim molecules. Each terephthalate bridges two neighboring $\mathrm{Co}^{\mathrm{II}}$ atoms to form a polymeric chain (Fig. 2).

The $\mathrm{Co}-\mathrm{O} 2$ distance of 2.515 (3) \AA is much longer than the Co-O1 and Co-O3 distances (Table 1), but is probably reasonable for a strained bidentate system. The $\mathrm{Co}-\mathrm{O} 1-\mathrm{C} 1$ angle of $102.2(2)^{\circ}$ appears to be compressed to allow Co and O 2 to approach each other. The other tp carboxylate group has a more typical $\mathrm{Co}-\mathrm{O} 3^{\mathrm{i}}-\mathrm{C} 8^{\mathrm{i}}$ angle of $110.4(2)^{\circ}$ and a much longer $\mathrm{Co}-\mathrm{O} 4^{\mathrm{i}}$ bond distance of 2.789 (3) \AA, indicating that there is no bonding between Co and $\mathrm{O} 4^{\mathrm{i}}$ [symmetry code: (i) $\left.\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right]$. This is consistent with the situation found in related $\mathrm{Mn}^{\mathrm{II}}$ (Liu et al., 2005) and $\mathrm{Cu}^{\mathrm{II}}$ complexes (Li et al., 2005).

Thus in (I) the two tp carboxyl groups coordinate to the Co atom differently, one in a monodentate mode and the other in
a chelating mode. The coordination geometry around the Co atom can be described as distorted trigonal-bipyramidal, with atoms O 2 and O 3 in the axial sites. The uncoordinated carboxyl O 4 atom accepts an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond from a bzim ligand of a neighboring chain (Table 2).

A partially overlapped arrangement of bzim rings from neighboring polymeric chains is observed in (I) (Fig. 2). The face-to-face separation between neighboring parallel bzim rings, related by an inversion center at $\left(\frac{1}{2}, 1, \frac{1}{2}\right)$, is 3.454 (11) \AA, strongly suggesting the existence of $\pi-\pi$ stacking.

Experimental

An aqueous solution $(5 \mathrm{ml})$ containing $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{~g}, 1 \mathrm{mmol})$, $\mathrm{NaOH}(0.08 \mathrm{~g}, 2 \mathrm{mmol})$ and terephthalic acid ($0.17 \mathrm{~g}, 1 \mathrm{mmol}$) was mixed with an ethanol solution $(15 \mathrm{ml})$ of bzim $(0.24 \mathrm{~g}, 2 \mathrm{mmol})$. The mixture was refluxed for 5 h . After cooling to room temperature, the solution was filtered. Red single crystals of (I) were obtained from the filtrate after two weeks.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=459.32$
Monoclinic, $P 2_{1} / n$
$a=17.319$ (2) А
$b=7.2711$ (7) \AA
$c=17.8495(18) \AA$
$\beta=115.002$ (3) ${ }^{\circ}$
$V=2037.1(4) \AA^{3}$
$Z=4$
$D_{x}=1.498 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7787
\quad reflections
$\theta=2.6-24.0^{\circ}$
$\mu=0.88 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Plate, red
$0.30 \times 0.21 \times 0.08 \mathrm{~mm}$

Data collection
Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.762, T_{\text {max }}=0.925$
10571 measured reflections
3527 independent reflections
2730 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-20 \rightarrow 20$
$k=-8 \rightarrow 8$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0744 P)^{2}\right)
$$

Figure 1
Part of the polymeric structure of (I), shown with 30% probability displacement ellipsoids for the non-H atoms [symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}-$ $\left.y, \frac{1}{2}+z\right]$.

Figure 2
Packing diagram for (I), showing the $\pi-\pi$ stacking.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.86	2.05	$2.792(4)$	145
$\mathrm{~N} 21-\mathrm{H} 21 \cdots 4^{\text {iv }}$	0.86	1.95	$2.735(4)$	151

Symmetry codes: (iii) $x, y+1, z$; (iv) $-x,-y+1,-z+1$.
H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and were included in the final cycles of refinement as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997) and $X P$ (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (grant No. 20443003).

metal-organic papers

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2154.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.

Liu, Y., Xu, D.-J. \& Hung, C.-H. (2005). Acta Cryst. C61, m155-m157.
Pan, T.-T. \& Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
Pan, T.-T. \& Xu, D.-J. (2005). Acta Cryst. E61, m1735-m1737.
Rigaku (1998). PROCESSAUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku (2002). CrystalStructure. Version 3.00. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

