metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tian-Tian Pan, Jian-Rong Su and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.006 Å R factor = 0.048 wR factor = 0.131 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[bis(1*H*-benzimidazole- κN^3)cobalt(II)]- μ -terephthalato- $\kappa^3 O^1, O^{1'}: O^4$]

In the title compound, $[Co(C_8H_4O_4)(C_7H_6N_2)_2]_n$, the terephthalate dianions bridge Co^{II} ions through terminal carboxyl groups to form polymeric complex chains; one carboxyl group coordinates in a monodentate manner and the other chelates to the Co atom. Two benzimidazole ligands also coordinate to the Co atom to complete a distorted trigonal-bipyramidal coordination geometry. The crystal packing is stabilized by $N-H\cdots O$ hydrogen bonds and $\pi-\pi$ stacking involving the benzimidazole ligands, with a face-to-face separation of 3.454 (11) Å.

Comment

 $\pi-\pi$ Stacking interactions between aromatic rings have attracted much attention because they are correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigations of the nature of $\pi-\pi$ stacking (Pan & Xu, 2004, 2005), the title polymeric Co^{II} complex, (I), incorporating terephthalate (tp) dianions and benzimidazole (bzim) ligands, has been prepared and its crystal structure is presented here.

A segment of the polymeric structure of (I) is illustrated in Fig. 1. The Co^{II} ion is coordinated by two tp dianions and two bzim molecules. Each terephthalate bridges two neighboring Co^{II} atoms to form a polymeric chain (Fig. 2).

The Co-O2 distance of 2.515 (3) Å is much longer than the Co-O1 and Co-O3 distances (Table 1), but is probably reasonable for a strained bidentate system. The Co-O1-C1 angle of 102.2 (2)° appears to be compressed to allow Co and O2 to approach each other. The other tp carboxylate group has a more typical Co-O3ⁱ-C8ⁱ angle of 110.4 (2)° and a much longer Co-O4ⁱ bond distance of 2.789 (3) Å, indicating that there is no bonding between Co and O4ⁱ [symmetry code: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$]. This is consistent with the situation found in related Mn^{II} (Liu *et al.*, 2005) and Cu^{II} complexes (Li *et al.*, 2005).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved atom differ

Thus in (I) the two tp carboxyl groups coordinate to the Co atom differently, one in a monodentate mode and the other in Received 5 September 2005 Accepted 5 October 2005 Online 14 September 2005 a chelating mode. The coordination geometry around the Co atom can be described as distorted trigonal-bipyramidal, with atoms O2 and O3 in the axial sites. The uncoordinated carboxyl O4 atom accepts an $N-H\cdots O$ hydrogen bond from a bzim ligand of a neighboring chain (Table 2).

A partially overlapped arrangement of bzim rings from neighboring polymeric chains is observed in (I) (Fig. 2). The face-to-face separation between neighboring parallel bzim rings, related by an inversion center at $(\frac{1}{2}, 1, \frac{1}{2})$, is 3.454 (11) Å, strongly suggesting the existence of π - π stacking.

Experimental

An aqueous solution (5 ml) containing $CoCl_2 \cdot 6H_2O$ (0.24 g, 1 mmol), NaOH (0.08 g, 2 mmol) and terephthalic acid (0.17 g, 1 mmol) was mixed with an ethanol solution (15 ml) of bzim (0.24 g, 2 mmol). The mixture was refluxed for 5 h. After cooling to room temperature, the solution was filtered. Red single crystals of (I) were obtained from the filtrate after two weeks.

 $D_x = 1.498 \text{ Mg m}^{-3}$

Cell parameters from 7787

 $0.30 \times 0.21 \times 0.08 \; \text{mm}$

3527 independent reflections

2730 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\begin{array}{l} \theta = 2.6 - 24.0^{\circ} \\ \mu = 0.88 \ \mathrm{mm}^{-1} \end{array}$

T = 295 (2) K

Plate, red

 $\begin{aligned} R_{\rm int} &= 0.057\\ \theta_{\rm max} &= 25.0^\circ \end{aligned}$

 $h = -20 \rightarrow 20$

 $k = -8 \rightarrow 8$

 $l = -21 \rightarrow 21$

Crystal data

 $\begin{bmatrix} Co(C_8H_4O_4)(C_7H_6N_2)_2 \end{bmatrix} \\ M_r = 459.32 \\ Monoclinic, P2_1/n \\ a = 17.319 (2) Å \\ b = 7.2711 (7) Å \\ c = 17.8495 (18) Å \\ \beta = 115.002 (3)^{\circ} \\ V = 2037.1 (4) Å^3 \\ Z = 4 \\ D_{clocently} Maximum Equation (4) \end{bmatrix}$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.762, T_{\max} = 0.925$ 10571 measured reflections

Refinement

- - - -

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0744P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.048$	+ 0.8857P]
$wR(F^2) = 0.131$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
3527 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
280 parameters	$\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1			
Selected	geometric parameters	(Å,	°)

Co-O1	2.022 (2)	C1-O1	1.262 (4)
Co-O2	2.515 (3)	C1-O2	1.235 (4)
Co-O3 ⁱ	2.000 (2)	C8-O3	1.268 (4)
Co-N13	2.034 (3)	C8-O4	1.246 (4)
Co-N23	2.039 (3)		
O1-Co-O2	56.01 (9)	O3 ⁱ -Co-N13	101.13 (10)
O1-Co-O3 ⁱ	107.21 (10)	O3 ⁱ -Co-N23	106.82 (11)
O1-Co-N13	110.78 (11)	N13-Co-N23	109.21 (12)
O1-Co-N23	119.93 (11)	Co-O1-C1	102.2 (2)
O2-Co-O3 ⁱ	163.22 (9)	Co-O2-C1	79.9 (2)
O2-Co-N13	86.92 (10)	Co ⁱⁱ -O3-C8	110.4 (2)
O2-Co-N23	83.92 (10)		

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Part of the polymeric structure of (I), shown with 30% probability displacement ellipsoids for the non-H atoms [symmetry code: (i) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$].

Figure 2			
Packing diagram	for (I), show	ing the $\pi - \pi$	stacking.

Table 2

Hydrogen-bond	geometry	(Å, '	°).
2 0	0 3	< /	

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{l} N11 - H11 \cdots O1^{iii} \\ N21 - H21 \cdots O4^{iv} \end{array}$	0.86 0.86	2.05 1.95	2.792 (4) 2.735 (4)	145 151

Symmetry codes: (iii) x, y + 1, z; (iv) -x, -y + 1, -z + 1.

H atoms were placed in calculated positions, with C-H = 0.93 Å and N-H = 0.86 Å, and were included in the final cycles of refinement as riding, with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997) and *XP* (Siemens, 1994); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2154.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.

- Liu, Y., Xu, D.-J. & Hung, C.-H. (2005). Acta Cryst. C61, m155-m157.
- Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
- Pan, T.-T. & Xu, D.-J. (2005). Acta Cryst. E61, m1735-m1737.
- Rigaku (1998). PROCESSAUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2002). CrystalStructure. Version 3.00. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.